~
%,

é;’f?} University of Pittsburgh

dB-SERC Mentor-Mentee
Evidence-Based Teaching Award

Adam J. Lee, Associate Professor
William C. Garrison Ill, PhD Candidate

Department of Computer Science

m, DEsigning and building secure systems is hard!

“The black art of programming Satan’s computer” [1]

Longstanding designs and implementations have been proven insecure:

KDC
e nonn |
.
—— B
Needham-Schroeder OpenSSL
Man-in-the-middle discovered Heartbleed vulnerability discovered
after 17 years in use 2 years after introduced

Formal verification is very difficult, even for experienced software engineers!

CS 1653 teaches security engineering with a
= focus on a semester-long group project

CS 1653: Applied Cryptography and Network Security

Lectures present algorithms and protocols, students apply these
in an interleaved semester project

In this project, students must:
 Work in groups for the full semester
* Propose their own solutions to adversarial tasks
* Develop, maintain, and extend a non-trivial code base (~5k lines)

Requires both design and coding!

File Server 1

="
=
2 DA<

Authenticate and
Manage Groups

Manage Files File Server n

% ‘ I .'
e -

(o)
Client <

Five phases, each considering additional security threats

Students meet with instructor to propose solutions, demo with
TA after submission

Even the best students run into problems with

The most common problems:
* Uneven distribution of work
* Lack of communication among group members
* Procrastination, submitting last-minute
* Juggling design and code
* Rushing through code
* Combining code written by multiple group members
* Design and code not matching, evolving out-of-sync

Can using a version control system help mitigate these issues?

The VCS maintains
a history of
previous commits
with descriptions

@ A commit is relative,
@.@ to ease the merging
@ of work from
@ multiple users

Commit logs are time series describing development at a fine
granularity, and have been used for a variety of experiments:

* Adoption of new APIs does not keep pace with their development [2]
* Programming language design has a modest effect on code quality [3]
e Gender and tenure diversity are positive predictors of productivity [4]
* Functions with asserts have significantly fewer defects [5]

* Asking questions on Q&A sites catalyzes development (and vice versa) [6]

How can using a VCS improve the CS 1653
roject for our students?

eRSIp
o
'

<
< o
A) .
Vv Nl ®
\A . N
v Y}
' v
! 7

Stay organized: students review their changes when committing

Commit logs improve communication: see what your
groupmates have completed

Much simpler merging when working simultaneously:
no more emailing code and manually combining!

Continuous submission: work until the deadline, committing as
you g0

What about using analytics?

VCS analytics to improve the course project

High-level goal: improve group performance... how?

During the semester

* Use analytics to detect problems in groups
* Allow the instructor to intervene as needed

Between semesters

* Use analytics to discover what makes some groups more successful
* Adjust course to encourage behavior seen in strong groups

We have collected and begun to analyze the first round of statistics
from the Spring 2015 offering of CS 1653

e 33 students, 14 groups, 4 project phases
* This summer: identify important analytics
* Next offering: changes based on these results

Basic analytics that may correlate with group
gy performance

* Number of commits
* Number of lines changed (can include multiple changes to a line)
* Number of surviving changes (excludes multiple changes, reverts)

Why?
* Larger commits may indicate tackling too much at once
* Low stability (surviving + total changes) may indicate struggles

Per-student variants on above analytics: distribution of labor

Author v Rows Stability Age % in comments
887 81.4 2.3 4.06
864 71.7 2.6 13.31

702 58.7 1.4 11.82

Author 2015W05 2015W06 2015W07 2015W09 2015W10

&] . :] .
[] [] I I I
Modified Rows: 304 1222 396 1101 1414
Break each phase of the project into weeks, measure changes
per week (overall and per student)
Why?

* Sharp increases may indicate procrastination
* Working around the same time may be better than “trading off”

10

Relationships between code and documentation

Are all group members working on both code and
documentation, or are there “writers” and “coders”?

Do the same group members code and document the same
assignment tasks?

- i
Y <

W ,‘ A is mostly responsible for

src/Client/RunClient.java (320 eloc)

src/Common/KeyMechanism.java (191 eloc)

J is mostly responsible for

doc/phase3-writeup.htm (96 eloc)

11

Comments and commit messages: more than
oractice?

Students are encouraged to thoroughly comment their code

Comments and good commit messages may also be indicative of
how well a group communicates

Author v Rows Stability Age % in comments

887 814 2.3 4.06

864 71.7 2.6

702 58.7 1.4 11.82

12

Analytics, overview

In code In Documentation
Commits Overall Per student Overall Per Student
Commits, temporal Overall Per student Overall Per Student
Changes Overall Per student Overall Per Student
Changes, temporal Overall Per student Overall Per Student
Surviving changes Overall Per student Overall Per Student
Commit length Overall Per student
Code comments Overall Per student

13

How can we evaluate whether a group works

ether?

sy well to

e Struggling groups can succeed in the end

Most obvious is grade. But is it the best?
* Coarse granularity: one grade for full project

e Poor group dynamics may not cause poor grade

* Why not just ask?

Project P3 Group Assessment

For these questions, consider only how your group worked toward Proj

Indicate the extent to which you agree with each of the following stater|

My groupmate(s) and | worked well together. *

1T 2 3 4 5

Strongly disagree Strongly agree

My groupmate(s) and | divided the work of this phase of the project fa

1T 2 3 4 5

Strongly disagree Strongly agree

My groupmate(s) and | communicated effectively. *

100
o
o © o
o
75
50
0.4

® Van'a@#changes among group / Grade

0.8 1.2

14

Meetings and demos provide opportunity for

2 subjective evaluation

As mentioned, course staff meets with groups at each phase:
* Designs must be approved in meeting with instructor

* Code must be demoed in meeting with TA

Instructor evaluation correlates strongly with self-evaluation

Instructor evaluation

Instructor evaluation vs. self-evaluation

4 @ a

Selfevaluation

15

Analysis techniques: manual combination of
=& features?

Measuring division of labor

i8]
Q 1.2
> .
2
o S
|y
o
IS
©
o ® o)
Y -
= 0.8 ® b
©
<
[&) o
£
® (=)
e o
.8 2 —
: q R2=0.431
zl
~ 04 o L
(o)
O ®
0

Standard deviation of
number of changes per Self.evaluation
group member

=, More advanced analysis techniques

Since we see at least moderate predictive value in a variety of
features, we will also use multivariable regression techniques

AveRooms <= 4.31

Medinc <= 5.04

i

N

Medinc <= 3.07

MedInc <= 6.82

'

AveOccup <= 2.37

AveOccup <= 2.74

Medinc <= 7.82

¢\

1.62 1.16

A

2.7 1.88

/ \

33 2.56

/A

3.7 4.57

Regression trees

T T T T T
g8 10 12 14 16 18 20
X

Regression splines

17

Possible outcomes of our study

As mentioned, early warnings can allow instructor to intervene

Changes can be made to the course depending on the variables
that indicate high degree of group success

Each student working on many assignment tasks - encourage
collaboration across tasks by targeting demo questions

High activity early - add additional checkpoints between deadlines
More comments = require turned-in Javadoc generated from comments

Same student writing code and documenting the same feature -
increase the detail of the write-up

Even split of changes — discuss statistics in demo, ask for justification if
uneven

18

= Questions? Thank yout!

References:

1. Ross J. Anderson and Roger M. Needham, “Programming Satan’s Computer,” In
Computer Science Today: Recent Trends and Developments, 1995.

2. Tyler McDonnell, Baishakhi Ray, Miryung Kim: An Empirical Study of API Stability
and Adoption in the Android Ecosystem. ICSM 2013:70-79

3. Baishakhi Ray, Daryl Posnett, Vladimir Filkov, Premkumar T. Devanbu: A large
scale study of programming languages and code quality in github. SIGSOFT FSE
2014:155-165

4. Bogdan Vasilescu, Daryl Posnett, Baishakhi Ray, Mark G. J. van den Brand,
Alexander Serebrenik, Premkumar T. Devanbu, Vladimir Filkov: Gender and
Tenure Diversity in GitHub Teams. CHI 2015:3789-3798

5. Casalnuovo Casey, Devanbu Prem, Oliveira Abilio, Filkov Vladimir, and Baishakhi
Ray: Assert Use in GitHub Projects. ICSE 2015

6. Bogdan Vasilescu, Vladimir Filkov, Alexander Serebrenik: StackOverflow and
GitHub: Associations between Software Development and Crowdsourced
Knowledge. SocialCom 2013:188-195

19

