Aligning teaching methods and students learning need Active learning vs. traditional classrooms

Armin Schikorra

dB-SERC lunch discussion, 08/06/2018

Course

► Calculus 1 (approx. 15 sections; each 75 students)

Course

- ► Calculus 1 (approx. 15 sections; each 75 students)
- first-year undergraduate students

Course

- ► Calculus 1 (approx. 15 sections; each 75 students)
- first-year undergraduate students
- most science, engineering students take it

Course

- ► Calculus 1 (approx. 15 sections; each 75 students)
- first-year undergraduate students
- most science, engineering students take it

Transform

4 courses (2x Everest, 2x Schikorra)

Course

- ► Calculus 1 (approx. 15 sections; each 75 students)
- first-year undergraduate students
- most science, engineering students take it

Transform

- ▶ 4 courses (2x Everest, 2x Schikorra)
- 2 in traditional format, 2 in active-learning format

Course

- ► Calculus 1 (approx. 15 sections; each 75 students)
- first-year undergraduate students
- most science, engineering students take it

Transform

- ▶ 4 courses (2x Everest, 2x Schikorra)
- 2 in traditional format, 2 in active-learning format
- compare performance (hopefully independent of instructor)

Course

- Calculus 1 (approx. 15 sections; each 75 students)
- first-year undergraduate students
- most science, engineering students take it

Transform

- 4 courses (2x Everest, 2x Schikorra)
- 2 in traditional format, 2 in active-learning format
- compare performance (hopefully independent of instructor)

Goal

► Find characteristics which make students likely to perform better in traditional teaching/flipped teaching

Course

- Calculus 1 (approx. 15 sections; each 75 students)
- first-year undergraduate students
- most science, engineering students take it

Transform

- 4 courses (2x Everest, 2x Schikorra)
- 2 in traditional format, 2 in active-learning format
- compare performance (hopefully independent of instructor)

Goal

- ► Find characteristics which make students likely to perform better in traditional teaching/flipped teaching
- Eventually scale and offer students choices/recommendations for teaching style

Course

- Calculus 1 (approx. 15 sections; each 75 students)
- first-year undergraduate students
- most science, engineering students take it

Transform

- 4 courses (2x Everest, 2x Schikorra)
- 2 in traditional format, 2 in active-learning format
- compare performance (hopefully independent of instructor)

Goal

- ► Find characteristics which make students likely to perform better in traditional teaching/flipped teaching
- Eventually scale and offer students choices/recommendations for teaching style
- "personalizing undergraduate education"

Teaching Design

Armin Schikorra (Ass. Prof., Math, Pitt)

Teaching Design

- Armin Schikorra (Ass. Prof., Math, Pitt)
- Ryan Alvarado (Postdoc, Math, Pitt)

Teaching Design

- Armin Schikorra (Ass. Prof., Math, Pitt)
- Ryan Alvarado (Ass. Prof., Math, Amherst College)

Teaching Design

- Armin Schikorra (Ass. Prof., Math, Pitt)
- Ryan Alvarado (Ass. Prof., Math, Amherst College)
- ► Thomas Everest (Lecturer, Math, Pitt)

Teaching Design

- Armin Schikorra (Ass. Prof., Math, Pitt)
- Ryan Alvarado (Ass. Prof., Math, Amherst College)
- ▶ Thomas Everest (Lecturer, Math, Pitt)

Educational Scientist/Evaluation

Dana Miller-Cotto (Postdoc, LRDC/Teaching Center)

Teaching Design

- Armin Schikorra (Ass. Prof., Math, Pitt)
- Ryan Alvarado (Ass. Prof., Math, Amherst College)
- Thomas Everest (Lecturer, Math, Pitt)

Educational Scientist/Evaluation

Dana Miller-Cotto (Postdoc, LRDC/Teaching Center)

Consultations

Russel Schwab (Assoc. Prof., Math, Michigan State)

Teaching Design

- Armin Schikorra (Ass. Prof., Math, Pitt)
- Ryan Alvarado (Ass. Prof., Math, Amherst College)
- Thomas Everest (Lecturer, Math, Pitt)

Educational Scientist/Evaluation

Dana Miller-Cotto (Postdoc, LRDC/Teaching Center)

Consultations

- Russel Schwab (Assoc. Prof., Math, Michigan State)
- ► Matteo Broccio (Lecturer, Physics, Pitt)

Teaching Design

- Armin Schikorra (Ass. Prof., Math, Pitt)
- Ryan Alvarado (Ass. Prof., Math, Amherst College)
- Thomas Everest (Lecturer, Math, Pitt)

Educational Scientist/Evaluation

Dana Miller-Cotto (Postdoc, LRDC/Teaching Center)

Consultations

- Russel Schwab (Assoc. Prof., Math, Michigan State)
- Matteo Broccio (Lecturer, Physics, Pitt)
- Emily Marshman (Assoc. Director, dB-Serc, Pitt)

Teaching Design

- Armin Schikorra (Ass. Prof., Math, Pitt)
- Ryan Alvarado (Ass. Prof., Math, Amherst College)
- Thomas Everest (Lecturer, Math, Pitt)

Educational Scientist/Evaluation

Dana Miller-Cotto (Postdoc, LRDC/Teaching Center)

Consultations

- Russel Schwab (Assoc. Prof., Math, Michigan State)
- Matteo Broccio (Lecturer, Physics, Pitt)
- Emily Marshman (Assoc. Director, dB-Serc, Pitt)

motivation

everybody learns differently

motivation

- everybody learns differently
- When working in 1-1 projects with undergradutes (REU)/graduates (PhD) I automatically adapt my teaching style.

motivation

- everybody learns differently
- When working in 1-1 projects with undergradutes (REU)/graduates (PhD) I automatically adapt my teaching style.
- difficult for larger groups

motivation

- everybody learns differently
- When working in 1-1 projects with undergradutes (REU)/graduates (PhD) I automatically adapt my teaching style.
- difficult for larger groups

active learning

shows some improvement in Calculus

motivation

- everybody learns differently
- When working in 1-1 projects with undergradutes (REU)/graduates (PhD) I automatically adapt my teaching style.
- difficult for larger groups

- shows some improvement in Calculus
- small classes

motivation

- everybody learns differently
- When working in 1-1 projects with undergradutes (REU)/graduates (PhD) I automatically adapt my teaching style.
- difficult for larger groups

- shows some improvement in Calculus
- small classes
- ▶ there seems to be no study on who profits from active learning

motivation

- everybody learns differently
- When working in 1-1 projects with undergradutes (REU)/graduates (PhD) I automatically adapt my teaching style.
- difficult for larger groups

- shows some improvement in Calculus
- small classes
- there seems to be no study on who profits from active learning
- dependent on instructor?

motivation

- everybody learns differently
- When working in 1-1 projects with undergradutes (REU)/graduates (PhD) I automatically adapt my teaching style.
- difficult for larger groups

- shows some improvement in Calculus
- small classes
- there seems to be no study on who profits from active learning
- dependent on instructor?

setup

Students read ahead/watch video to prepare for class

setup

- Students read ahead/watch video to prepare for class
- (easy) conceptional online-quiz due before the beginning of the class

setup

- Students read ahead/watch video to prepare for class
- (easy) conceptional online-quiz due before the beginning of the class
- Monday/Wednesday: Active learning classes, group work on problem sets

setup

- Students read ahead/watch video to prepare for class
- (easy) conceptional online-quiz due before the beginning of the class
- Monday/Wednesday: Active learning classes, group work on problem sets
- Friday: summarizing lecture

setup

- Students read ahead/watch video to prepare for class
- (easy) conceptional online-quiz due before the beginning of the class
- Monday/Wednesday: Active learning classes, group work on problem sets
- Friday: summarizing lecture

problem sets

similarities to online homework (to incentivise working on it).

setup

- Students read ahead/watch video to prepare for class
- (easy) conceptional online-quiz due before the beginning of the class
- Monday/Wednesday: Active learning classes, group work on problem sets
- Friday: summarizing lecture

problem sets

similarities to online homework (to incentivise working on it).

groups

groups of 3 or 4 (20 groups, 3 instructors).

setup

- Students read ahead/watch video to prepare for class
- (easy) conceptional online-quiz due before the beginning of the class
- Monday/Wednesday: Active learning classes, group work on problem sets
- Friday: summarizing lecture

problem sets

similarities to online homework (to incentivise working on it).

groups

- groups of 3 or 4 (20 groups, 3 instructors).
- group composition changes per week.

setup

- Students read ahead/watch video to prepare for class
- (easy) conceptional online-quiz due before the beginning of the class
- Monday/Wednesday: Active learning classes, group work on problem sets
- Friday: summarizing lecture

problem sets

similarities to online homework (to incentivise working on it).

groups

- groups of 3 or 4 (20 groups, 3 instructors).
- group composition changes per week.
- ▶ (tough) instructors stay with each group for around 1 minute before moving on.

setup

- Students read ahead/watch video to prepare for class
- (easy) conceptional online-quiz due before the beginning of the class
- Monday/Wednesday: Active learning classes, group work on problem sets
- Friday: summarizing lecture

problem sets

similarities to online homework (to incentivise working on it).

groups

- groups of 3 or 4 (20 groups, 3 instructors).
- group composition changes per week.
- ▶ (tough) instructors stay with each group for around 1 minute before moving on.

Layout

current layout

Mo/We/Fr	Tuesday	Thursday	
75 students	3x 25 students	75 students	
Frontal lecture	Recitation (Quiz, Q&A)	(online homework)	
	1 TA/25 ppl.	1 TA/25 ppl.	

Layout

current layout

Mo/We/Fr	Tuesday	Thursday	
75 students	3x 25 students	75 students	
Frontal lecture	Recitation (Quiz, Q&A)	(online homework)	
	1 TA/25 ppl.	1 TA/25 ppl.	

active-learning layout

Mo/We	Fr	Tu	Th
75 stud.	75 stud.	(unchanged)	75 stds
mini-lect. (10 min)	summarizing lect.		videos
group work (40 min)			
1 TA	0 TA	1TA/25ppl.	1 TA/75 ppl
1 UTA	0 UTA		

Assessment

current assessment

Ca. 10 Quizzes	online hw	Midterm 1, 2	Final
10%	10%	25%	30%
instructor	departmental	instructor	departmental
			cumulative
			letter grade ± 1

Material

 All material available to both (active learning and traditional learning)

videos

- ► Lightboard-solution preferable
- use also of available online videos

Main Challenges

dangers/challenges

- working sheets to keep students engaged
- making groups work
- moving between groups (8 groups per instructor, moving rapidly, only 80 minutes of group work)

in progress:

- preparation of working sheets
- preparation of videos