Aligning teaching methods and students learning need
Active learning vs. traditional classrooms

Armin Schikorra

dB-SERC lunch discussion, 08/06/2018
What?

Course

- **Calculus 1** (approx. 15 sections; each 75 students)
What?

Course

- **Calculus 1** (approx. 15 sections; each 75 students)
- first-year undergraduate students
What?

Course

- **Calculus 1** (approx. 15 sections; each 75 students)
- first-year undergraduate students
- most science, engineering students take it
What?

Course
- Calculus 1 (approx. 15 sections; each 75 students)
- first-year undergraduate students
- most science, engineering students take it

Transform
- 4 courses (2x Everest, 2x Schikorra)
What?

Course

- **Calculus 1** (approx. 15 sections; each 75 students)
- first-year undergraduate students
- most science, engineering students take it

Transform

- 4 courses (2x Everest, 2x Schikorra)
- 2 in traditional format, 2 in active-learning format
What?

Course
- **Calculus 1** (approx. 15 sections; each 75 students)
- first-year undergraduate students
- most science, engineering students take it

Transform
- 4 courses (2x Everest, 2x Schikorra)
- 2 in traditional format, 2 in active-learning format
- compare performance (hopefully independent of instructor)
What?

Course
- **Calculus 1** (approx. 15 sections; each 75 students)
- first-year undergraduate students
- most science, engineering students take it

Transform
- 4 courses (2x Everest, 2x Schikorra)
- 2 in traditional format, 2 in active-learning format
- compare performance (hopefully independent of instructor)

Goal
- Find characteristics which make students likely to perform better in traditional teaching/flipped teaching
What?

Course
▶ Calculus 1 (approx. 15 sections; each 75 students)
▶ first-year undergraduate students
▶ most science, engineering students take it

Transform
▶ 4 courses (2x Everest, 2x Schikorra)
▶ 2 in traditional format, 2 in active-learning format
▶ compare performance (hopefully independent of instructor)

Goal
▶ Find characteristics which make students likely to perform better in traditional teaching/flipped teaching
▶ Eventually scale and offer students choices/recommendations for teaching style
What?

Course
- Calculus 1 (approx. 15 sections; each 75 students)
- first-year undergraduate students
- most science, engineering students take it

Transform
- 4 courses (2x Everest, 2x Schikorra)
- 2 in traditional format, 2 in active-learning format
- compare performance (hopefully independent of instructor)

Goal
- Find characteristics which make students likely to perform better in traditional teaching/flipped teaching
- Eventually scale and offer students choices/recommendations for teaching style
- “personalizing undergraduate education”
Who?

Teaching Design

- Armin Schikorra (Ass. Prof., Math, Pitt)
Who?

Teaching Design

- Armin Schikorra (Ass. Prof., Math, Pitt)
- Ryan Alvarado (Postdoc, Math, Pitt)
Who?

Teaching Design

- Armin Schikorra (Ass. Prof., Math, Pitt)
- Ryan Alvarado (Ass. Prof., Math, Amherst College)
- Thomas Everest (Lecturer, Math, Pitt)
- Dana Miller-Cotto (Postdoc, LRDC/Teaching Center)
- Russel Schwab (Assoc. Prof., Math, Michigan State)
- Matteo Broccio (Lecturer, Physics, Pitt)
- Emily Marshman (Assoc. Director, dB-Serc, Pitt)
Who?

Teaching Design

- Armin Schikorra (Ass. Prof., Math, Pitt)
- Ryan Alvarado (Ass. Prof., Math, Amherst College)
- Thomas Everest (Lecturer, Math, Pitt)
Who?

Teaching Design
- Armin Schikorra (Ass. Prof., Math, Pitt)
- Ryan Alvarado (Ass. Prof., Math, Amherst College)
- Thomas Everest (Lecturer, Math, Pitt)

Educational Scientist/Evaluation
- Dana Miller-Cotto (Postdoc, LRDC/Teaching Center)
Who?

Teaching Design

- Armin Schikorra (Ass. Prof., Math, Pitt)
- Ryan Alvarado (Ass. Prof., Math, Amherst College)
- Thomas Everest (Lecturer, Math, Pitt)

Educational Scientist/Evaluation

- Dana Miller-Cotto (Postdoc, LRDC/Teaching Center)

Consultations

- Russel Schwab (Assoc. Prof., Math, Michigan State)
Who?

Teaching Design
- Armin Schikorra (Ass. Prof., Math, Pitt)
- Ryan Alvarado (Ass. Prof., Math, Amherst College)
- Thomas Everest (Lecturer, Math, Pitt)

Educational Scientist/Evaluation
- Dana Miller-Cotto (Postdoc, LRDC/Teaching Center)

Consultations
- Russel Schwab (Assoc. Prof., Math, Michigan State)
- Matteo Broccio (Lecturer, Physics, Pitt)
Who?

Teaching Design

- Armin Schikorra (Ass. Prof., Math, Pitt)
- Ryan Alvarado (Ass. Prof., Math, Amherst College)
- Thomas Everest (Lecturer, Math, Pitt)

Educational Scientist/Evaluation

- Dana Miller-Cotto (Postdoc, LRDC/Teaching Center)

Consultations

- Russel Schwab (Assoc. Prof., Math, Michigan State)
- Matteo Broccio (Lecturer, Physics, Pitt)
- Emily Marshman (Assoc. Director, dB-Serc, Pitt)
Who?

Teaching Design

- Armin Schikorra (Ass. Prof., Math, Pitt)
- Ryan Alvarado (Ass. Prof., Math, Amherst College)
- Thomas Everest (Lecturer, Math, Pitt)

Educational Scientist/Evaluation

- Dana Miller-Cotto (Postdoc, LRDC/Teaching Center)

Consultations

- Russel Schwab (Assoc. Prof., Math, Michigan State)
- Matteo Broccio (Lecturer, Physics, Pitt)
- Emily Marshman (Assoc. Director, dB-Serc, Pitt)
Why?

motivation

▶ everybody learns differently
Why?

motivation

▶ everybody learns differently
▶ When working in 1-1 projects with undergraduates (REU)/graduates (PhD) I automatically adapt my teaching style.
Why?

motivation

- everybody learns differently
- When working in 1-1 projects with undergraduates (REU)/graduates (PhD) I automatically adapt my teaching style.
- difficult for larger groups
Why?

motivation

▸ everybody learns differently

▸ When working in 1-1 projects with undergraduates (REU)/graduates (PhD) I automatically adapt my teaching style.

▸ difficult for larger groups

active learning

▸ shows some improvement in Calculus
Why?

motivation

▸ everybody learns differently

▸ When working in 1-1 projects with undergraduates (REU)/graduates (PhD) I automatically adapt my teaching style.

▸ difficult for larger groups

active learning

▸ shows some improvement in Calculus

▸ small classes
Why?

motivation

► everybody learns differently
► When working in 1-1 projects with undergraduates (REU)/graduates (PhD) I automatically adapt my teaching style.
► difficult for larger groups

active learning

► shows some improvement in Calculus
► small classes
► there seems to be no study on who profits from active learning
Why?

motivation
- everybody learns differently
- When working in 1-1 projects with undergraduates (REU)/graduates (PhD) I automatically adapt my teaching style.
- difficult for larger groups

active learning
- shows some improvement in Calculus
- small classes
- there seems to be no study on who profits from active learning
- dependent on instructor?
Why?

motivation

- everybody learns differently
- When working in 1-1 projects with undergraduates (REU)/graduates (PhD) I automatically adapt my teaching style.
- difficult for larger groups

active learning

- shows some improvement in Calculus
- small classes
- there seems to be no study on who profits from active learning
- dependent on instructor?
Active Learning

setup

- Students read ahead/watch video to prepare for class
Active Learning

setup

- Students read ahead/watch video to prepare for class
- (easy) conceptional online-quiz due before the beginning of the class
Active Learning

setup

- Students read ahead/watch video to prepare for class
- (easy) conceptional online-quiz due before the beginning of the class
- Monday/Wednesday: Active learning classes, group work on problem sets
Active Learning

setup

▶ Students read ahead/watch video to prepare for class
▶ (easy) conceptional online-quiz due before the beginning of the class
▶ Monday/Wednesday: Active learning classes, group work on problem sets
▶ Friday: summarizing lecture
Active Learning

setup

▶ Students read ahead/watch video to prepare for class
▶ (easy) conceptional online-quiz due before the beginning of the class
▶ Monday/Wednesday: Active learning classes, group work on problem sets
▶ Friday: summarizing lecture

problem sets

▶ similarities to online homework (to incentivise working on it).
Active Learning

setup

▶ Students read ahead/watch video to prepare for class
▶ (easy) conceptional online-quiz due before the beginning of the class
▶ Monday/Wednesday: Active learning classes, group work on problem sets
▶ Friday: summarizing lecture

problem sets

▶ similarities to online homework (to incentivise working on it).

groups

▶ groups of 3 or 4 (20 groups, 3 instructors).
Active Learning

setup
- Students read ahead/watch video to prepare for class
- (easy) conceptional online-quiz due before the beginning of the class
- Monday/Wednesday: Active learning classes, group work on problem sets
- Friday: summarizing lecture

problem sets
- similarities to online homework (to incentivise working on it).

groups
- groups of 3 or 4 (20 groups, 3 instructors).
- group composition changes per week.
Active Learning

setup
- Students read ahead/watch video to prepare for class
- (easy) conceptional online-quiz due before the beginning of the class
- Monday/Wednesday: Active learning classes, group work on problem sets
- Friday: summarizing lecture

problem sets
- similarities to online homework (to incentivise working on it).

groups
- groups of 3 or 4 (20 groups, 3 instructors).
- group composition changes per week.
- (tough) instructors stay with each group for around 1 minute before moving on.
Active Learning

setup

▶ Students read ahead/watch video to prepare for class
▶ (easy) conceptional online-quiz due before the beginning of the class
▶ Monday/Wednesday: Active learning classes, group work on problem sets
▶ Friday: summarizing lecture

problem sets

▶ similarities to online homework (to incentivise working on it).

groups

▶ groups of 3 or 4 (20 groups, 3 instructors).
▶ group composition changes per week.
▶ (tough) instructors stay with each group for around 1 minute before moving on.
Layout

current layout

<table>
<thead>
<tr>
<th>Mo/We/Fr</th>
<th>Tuesday</th>
<th>Thursday</th>
</tr>
</thead>
<tbody>
<tr>
<td>75 students</td>
<td>3× 25 students</td>
<td>75 students</td>
</tr>
<tr>
<td>Frontal lecture</td>
<td>Recitation (Quiz, Q&A)</td>
<td>(online homework)</td>
</tr>
<tr>
<td></td>
<td>1 TA/25 ppl.</td>
<td>1 TA/25 ppl.</td>
</tr>
</tbody>
</table>
Layout

current layout

<table>
<thead>
<tr>
<th>Mo/We/Fr</th>
<th>Tuesday</th>
<th>Thursday</th>
</tr>
</thead>
<tbody>
<tr>
<td>75 students</td>
<td>3x 25 students</td>
<td>75 students</td>
</tr>
<tr>
<td>Frontal lecture</td>
<td>Recitation (Quiz, Q&A)</td>
<td>(online homework)</td>
</tr>
<tr>
<td></td>
<td>1 TA/25 ppl.</td>
<td>1 TA/25 ppl.</td>
</tr>
</tbody>
</table>

active-learning layout

<table>
<thead>
<tr>
<th>Mo/We</th>
<th>Fr</th>
<th>Tu</th>
<th>Th</th>
</tr>
</thead>
<tbody>
<tr>
<td>75 stud.</td>
<td>75 stud.</td>
<td>(unchanged)</td>
<td>75 stds</td>
</tr>
<tr>
<td>mini-lect. (10 min)</td>
<td>summarizing lect.</td>
<td></td>
<td>videos</td>
</tr>
<tr>
<td>group work (40 min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 TA</td>
<td>0 TA</td>
<td>1TA/25ppl.</td>
<td>1 TA/75 ppl</td>
</tr>
<tr>
<td>1 UTA</td>
<td>0 UTA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Assessment

current assessment

<table>
<thead>
<tr>
<th>Ca. 10 Quizzes</th>
<th>online hw</th>
<th>Midterm 1, 2</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>10%</td>
<td>25%</td>
<td>30%</td>
</tr>
<tr>
<td>instructor</td>
<td>departmental</td>
<td>instructor</td>
<td>departmental cumulative letter grade ±1</td>
</tr>
</tbody>
</table>
Material

- All material available to both (active learning and traditional learning)

videos

- Lightboard-solution preferable
- use also of available online videos
Main Challenges

dangers/challenges
▶ working sheets to keep students engaged
▶ making groups work
▶ moving between groups (8 groups per instructor, moving rapidly, only 80 minutes of group work)

in progress:
▶ preparation of working sheets
▶ preparation of videos